Detector Channels	Preamps + settings	max. ampl.	Shaper-settings	max. ampl.	Caen v785 AH ADC	meas. peak @ ADC ch.	
Si-strips p-sides 7x6 = 42 channels	MPR-32 Gain setting: 1 GeV = 1 V	2 GeV = 2 V overrange!	Hardware gain: x2 Software gain: x20 Shaping time: 1 us	80V overrange!		< ch. 500 (this is likely not the actual signal)	
Si-pads n-sides 6 channels	MSI-8 Gain setting: 5 GeV = 1 V	2 GeV = 0.4 V	Hardware gain: x2 Software gain: x8 Shaping time: 1 us	6.4V	range: 8 V	ch. 1500-2000 (expected: ~3300)	
DSSD p- & n-side 4 channels	MSI-8 Gain setting: 5 GeV = 1 V	1.2 GeV = 0.25 V	Hardware gain: x2 Software gain: x11 Shaping time: 1 us	5.5V (resistor chain!)	Resolution: 12 bit/4096 ch	-	
CsI Photodiode 2 channels	MSI-8 Gain setting: 4 GeV = 1 V	Ions: 46 GeV PI: 1-6 GeV = 0.25 - 1.5 V Csl light output 50k/MeV PI quantum eff. 80% Si ionization energy 3.6eV Heavy ion quenching ~1-5	Hardware gain: x2 Software gain: x5 Shaping time: 1 us	2.5 – 15 V		~ ch. 2200 (expected: 1200 – overflow) 2200 corresponds to 2 GeV @ PI and quench factor ~ 3.5	

E-loss calculation with WebAtima: https://www.isotopea.com/webatima/

8

CsI

222.272

			E-los	ss calc	ulation	with \	Web/	۹tir	na:	ht
rojectile	M	latter								
206Pb⁸¹⁺ T = 400.000 MeV/u	#	name	matter	density (g/cm ³⁾	thick. (mg/cm ²)	thick. (cm)				
Bp= 8.06836 Tm mA = 205.93003 u A/Q = 2.5423	0	Pad1	Si	2.33	116.5	0.05	1	\	•	Î
Change	1	DSSD	Si	2.33	69.9	0.03	1	\	ľ	Ī
	2	Pad2	Si	2.33	116.5	0.05	1	\	ľ	Ī
	3	Pad3	Si	2.33	116.5	0.05	1	\	ľ	Î
	4	Pad4	Si	2.33	116.5	0.05	1	\	İ	Î
	5	Pad5	Si	2.33	116.5	0.05	1	\	ľ	Î
	6	Pad6	Si	2.33	116.5	0.05	1	\	ľ	Î
	7	degrader	Ta	16.654	1.67e+3	0.1	1	\	•	Î
	8	CsI	CsI	4.51	4.51e+3	1	1	\	•	Î
		Add Matter								
		Fotal thickne		_	More	ē	Plots			+

Total Results Projectile: 206Pb @ 400MeV/u Change $E_{out} = 0.00000 \text{ MeV/u}$ $E_{loss} = 82372.0121 \text{ MeV}$ $\sigma_a = 0 \text{ mrad}$ Reaction rate: N/A $B\rho = 0.00000 \text{ Tm}$ $\sigma_E = 0 \text{ MeV/u}$ $\sigma_{pos} = 0.0071 \text{ cm}$ $\beta = 0.00000$ TOF = 0.021057 ns

2.267e-3

0

1.898

1.927e-3 1.0

4.577e+4