ID |
Date |
Author |
Category |
Subject |
120
|
Thu Apr 7 01:19:05 2022 |
Patrick | Laser | Laser scanning |
We did some laser scans. The wavemeter shows spikes during scans. This may be just while the frequency changes. See picture. |
Attachment 1: 2022-04-07_Wavemeter_during_scan.png
|
|
Attachment 2: 2022-04-07_Wavemeter_during_scan2.png
|
|
Attachment 3: 2022-04-07_Wavemeter_during_scan3.png
|
|
Attachment 4: 2022-04-07_Wavemeter_during_scan4.png
|
|
170
|
Fri Apr 8 17:57:45 2022 |
Konstantin | DAQ | Laser scanning |
Time | SIS-intensity | cooler-HV | LMD-DAQ1 (R4L-68) | LMD-DAQ2 (R4L-41) | scan range (nm) | step width(nm) | dwell time(s) | comments
|
17:28 | 1.1e9 | - | 0083 | 7822 | 322.3-321.3 | 0.01 | 4 | Wrong scan range
|
17:48 | 1.4e9 | 209618 | 0084 | 7823 | 322.3-321.3 | 0.01 | 4 | Wrong scan range
|
18:10 | 1.6e9 | - | 0085 | 7824 | 323.2-321.2 | 0.01 | 4 | acquisition on r4l-68 crashed
|
18:13 | 2e9 | - | 0086 | - | 323.2-321.2 | 0.01 | 4 | acquisition on r4l-41 crashed
|
18:29 | 1.9e9 | 209618 | 0087 | 7826 | 323.2-321.2 | 0.01 | 4 | An artifact is observed at about 644nm <-> 322nm fundamental wavelength
|
20:17 | 2e9 | 209609 | 0089 | 7827 | 323.2-321.2 | 0.01 | 4 | Cu-mirror and XUV detector are not driven at the moment. It is unclear for how long this was the case. Optimization of the accelerator settings were done before.
|
21:12 | 1.6e9 | - | 0089 | 7828 | 323.2-321.2 | 0.01 | 4 | Laser got wrong pulse widths during this scan and also during the last one.
|
At about 20:00 the slits were adjusted to the h=1 settings:
NI: 5mm
NA: -3mm
SA: -10mm (also the voltage for the Scitnilator in this pocket was increased to 1500V)
SA_Scraper: +14mm |
Attachment 1: Artifacts_in_PMT_MiddleAndNorth.png
|
|
174
|
Sat Apr 9 03:27:47 2022 |
Patrick | DAQ | Laser scanning |
DAQ1: lxg1927:/data.local2/BeamTimeTh22/
DAQ2: lxg0155:/data.local2/E142/
LMD file name DAQ1:229Thor
LMD file name DAQ2:229Th
Shottky marker pos: 243.973MHz
Time | SIS-intensity | cooler-HV | LMD-DAQ1 | LMD-DAQ2 | scan range(nm) | step width(nm) | dwell time(s) | comments
|
xx:xx | x.xe9 | 209xxx | 00xx | 78xx | 32x.x - 32x.x | 0.01 | x | sketch for filling the table
|
04:13 | 1.4e9 | 209614 | 0093 | 7831 | 323.2 - 321.2 | 0.01 | 4 | First laser scan this night shift
|
04:46 | 1.3e9 | 209616 | 0094 | 7832 | 323.2 - 321.2 | 0.01 | 4 |
|
05:17 | 1.0e9 | 209617 | 0095 | 7833 | 323.2 - 321.2 | 0.01 | 4 | The laser left the screen between the two loops
|
05:54 | 1.5e9 | 209619 | 0097 | 7835 | 323.2 - 321.2 | 0.01 | 4 | go4 on DAQ2 does not show any events. mbs does not write to file although it is OPEN and the acq is RUNNING
|
|
Attachment 1: does_not_write_data_to_file.png
|
|
231
|
Thu Apr 14 19:46:46 2022 |
Sarper & Konstantin & Rodolfo | Laser | Laser power |
We checked the laser power before starting the new scan range.
- Seed energy before Cobra @ 532 nm: 513 mJ (before 499 mJ).
- New correction factor for Monitor: 71.25.
- UV output energy after SHG @ 320.1 nm: 11 mJ
All values are averaged over 500 laser pulses. |
83
|
Sun Apr 3 18:52:30 2022 |
Konstantin | Calibration | Laser ion beam overlap |
We measured vertical and horizontal ion beam positions. Unfortunately, the horizontal scraper positions can not be manipulated
by the "Device Control" software. Robert Boywitt has supported us a lot to get the drives moving by using the expert software on
a local control PC, which can only be remotely accessed from beapc032 with the usual experiment account "atplaser". In the first
try we were only able to determine the vertical positions of a beam which was not the 229Th (positions were measured already on
Sunday, 03.04.)
Scraper | ion beam position (outer->inner) |
GECEDS2VU | -1.3(2) mm |
GECEDS1VU | -0.7(2) mm |
|
Finally, we got 229Th (Wednesday, 06.04.) and were able to measure the ion beam positions. Those are
summarized in the following table. The first values are those were the scraping begins, hence representing the
edge of the ion beam. The second values represent the central positions of the ion beam.
Scraper | ion beam position (outer->inner) | ion beam position (inner->outer)
|
GECEDS2VU | -1.6(2) mm / -1.3(2) mm | |
GECEDS2HA | -13.8(2) mm / -13.4(2) mm | -4.0(2) mm / -4.6(2) mm |
GECEDS1VU | -1(4) mm / -0.9(2) mm | |
GECEDS1HA | -18.1(2) mm / -17.6(2) mm | -7.7(2) mm / -8.2(2) mm |
|
Schreenshots taken at scraper positions are given in Entry 142 |
152
|
Fri Apr 8 08:17:52 2022 |
Sebastian | Laser | Laser Ext Trig is working |
We (Max, Kristian, Danyal, me) fixed the "external trigger" problem.
1.) The delay between lamp sync and Q-switch trigger was too long. The delay must be 200µs (3rd picture)!
2.) The settings from the left Dual Timer (upper and lower part) in the ESR Laser Lab (above QuantaRay laser) were wrong and are now adjusted. Settings are depicted in the attached photos (1st and 2nd pic).
4th picture shows the pulse train of the pump laser. |
Attachment 1: upperDualTimerSettings.JPG
|
|
Attachment 2: lowerDualTimerSettings.JPG
|
|
Attachment 3: LampSyncToQSwitchTrig.JPG
|
|
Attachment 4: TriggerPulseTrain.JPG
|
|
108
|
Wed Apr 6 13:32:57 2022 |
Max, Sebastian | DAQ | LabView Cobra Channel List |
channel 0: linux time (epoch time)
channel 1: ms timer
channel 2: E-Cooler Voltage(Ohmlabs)
channel 3: Cobra Set Wavelength
channel 4: WS7 wavelength
channel 5: WS7 frequency
channel 6: WS7 status
channel 7: Status keysight (?)
channel 8: WS7 pressure (?)
channel 9: CobraMotorPosUpperPart
channel 10: CobraMotorPosLowerPart
channel 11: CobraNumberOfLoop
channel 12: StatusCobra
channel 13: WS7 temperature (?)
channel 14: CobraFromWavelength (higher wavelength)
channel 15: CobraToWavelength (lower wavelength)
channel 16: CobraIncrement
channel 17: CobraStepNr
channel 18: status?
channel 19: PTB divider (not connected to cooler)
channel 20: ?
|
115
|
Wed Apr 6 19:39:08 2022 |
Ken Ueberholz | Detectors | LED installed |
The UV-LED of Münster was connected over
channel 8 to the Messhütte. 6V are
supplied by the power supply (picture 2).
The Led is located at the xuv detector
(picture 1). |
Attachment 1: 20220406_193541.jpg
|
|
Attachment 2: 20220406_193439.jpg
|
|
173
|
Sat Apr 9 02:55:38 2022 |
Carsten | Accelerator | Kühlerausfall und Gründe dazu |
Wir hatten heute Abend eine Kühlerausfall, der uns mehrere Stunden beschäftigt hat, weil gem. Anzeige in Device Control kein Netzteil mit „rot“ angezeigt/ausgefallen war (siehe unten).
Nach Rufbereitschaft Serge, dann Regina sowie Controls konnte zunächst gefunden werden, dass das Netzteil einer Clearingelektrode (GECEKD2D) keinen korrekten Wert hat. Problem mittels Operateur (Christoph ?) und Rufbereitschaft Contrls gelöst.
Kühler ist trotzdem jedes Mal ausgefallen, wenn man versucht hat, auch nur den geringsten Strom zu ziehen (mit Hilfe Telefonunterstüzung Regina).
Rufbereitschaft Jon.
Mit ihm haben wir dann herausgefunden, dass im Device-Control, bei Auswahl „Kühler“ UND wenn das Fenster nicht vollständig maximiert ist, die letzten drei Netzteile (ECEBG8T, ECEBG3D, ECEBG4D) nicht angezeigt werden und man auch den Scrollbalken nicht dorthin bewegen kann (ergo: nicht vorhanden sind…). Ist das Fenster von DC maximiert, tauche die Geräte wieder auf und ACH WUNDER ECEBG8T (Kollektor) ist rot, lässt sich einfach wieder zuschalten und auch der Rest wieder anschalten. Ein Fehler, den ich leicht hätte selber beheben können, wenn er denn nur angezeigt worden wäre.
Soll heißen: Man weiß zwar, das irgendwo ein Fehler ist, kriegt aber in diesem Modus das Gerät gar nicht angezeigt… |
134
|
Thu Apr 7 09:58:55 2022 |
Ragan, Yuri, Danyal | Accelerator | Kicker problem solved |
The kicker problem is solved and the beam is back in the ESR. |
205
|
Mon Apr 11 07:54:37 2022 |
Danyal, Alexandre, Kristian, Sebastian | Accelerator | Jump in E-cooler voltage |
We saw a jump in the E-cooler voltage at about 7:50.
jump from 209619 to 209610 V
At 7:56 it jumped back to 209619 V
seems stable now |
39
|
Wed Mar 30 09:27:15 2022 |
Rodolfo | Accelerator | Issue? Scrapers at E-Cooler |
Carsten* forwarded me an E-Mail from Markus yesterday. "Betreff: Scraper im ESR Elektronenkühler"
- Markus has tried to get moving the scrapers at E-Cooler last week. But he got some issues.
- The expert (Herr Robert Boywitt, Abteilung BEA) has been contacted and he is working on this issue.
- The scrapers move in one follows the instructions (please attached screenshot).
- However it was also noticed that the actuators for the scrapers show now tolerance of "2 mm". This can affect the accuracy and the reproducibility of the ion- and laser-beam positions, e.g the overlap.
* he was so lazy that he could not post this in the ELog. |
Attachment 1: Schrittmotorsteuerung_ECooler.JPG
|
|
206
|
Mon Apr 11 10:17:01 2022 |
Danyal | Accelerator | Interlock - reset |
10:17
Wie heutemorgen in der Sitzung (morning briefing) vereinbart,
führt Herr Florenkowski einen Interlock und danach einen Reset von E02MK durch.
Das dauert nur ca. 15 min.
nach dem interlock wurde der ESR "rot"
Um 10:21 war das problem gelöst und der ESR war wieder "blau" |
96
|
Tue Apr 5 12:17:12 2022 |
Ragan, Rui-Jiu | DAQ | Instructions to start and stop NTCAP |
Attached are the instructions to start and stop data taking using the NTCAP. |
Attachment 1: Start_data_taking.pdf
|
|
Attachment 2: Stop_data_taking.pdf
|
|
Attachment 3: Start_data_taking.png
|
|
Attachment 4: Stop_data_taking.png
|
|
143
|
Thu Apr 7 19:13:26 2022 |
Konstantin, Patrick | Calibration | How to find the correct laser position |
In order to achieve the correct laser ion beam superposition one needs to do the following steps:
- If the laser stabilization is still running, turn both stages off and block the main amplifier.
- Ensure that the laser spot is centered on the paper screen, which is located in top of the laser tower in the south (ATTENTION: please only use the preamplifier and not the main amplifier!!! If you're unsure what you are doing please contact Rodolfo or Konstantin).
- If this is not the case and the beam is completely off, have a look at the MRC Stabilization system. If it is running, close the software and turn the hardware off and on again. The spot will leave its position and come back after the stabilization is turned on again.
- If it is still not centered, use and only use the piezo mirror (the one with red screws) to bring back the spot.
- Remove the paper screen and then turn on the main amplifier.
- Restart the software and put in the values from the file 07-04-2022(...).png. Start the two stabilization stages in the software. The laser spot should move back to the correct position.
|
127
|
Thu Apr 7 05:23:50 2022 |
Patrick | DAQ | How To Start MBS for DAQ2 (Carstens DAQ) |
(MBS server should be running at the LXG0155 machine. If not you will get an error message. Then start the server - last command in console)
Just enter the following commands in the console of any PC
ssh stoe_exp@r4l-68
*** Password on a sheet of paper ***
resl
cd /esr/usr/stoe_exp/E142Brandau/SCA... (auto complete with tab)
mbs
@startup
connect rfio lxg0155 -disk
open file lxg0155:/data.local2/E142/229Th -auto -rfio
sta ac
To stop MBS enter the following commands
sto ac
close file
disconnect rfio
@shutdown
exit
resl |
45
|
Thu Mar 31 22:19:14 2022 |
Kristian | DAQ | How To Start MBS |
(MBS server should be running at the LXG1297 machine. If not you will get an error message. Then start the server - last command in console)
Just enter the following commands in the console of any PC
ssh atplaser@r4l-41
ThE142_2022
resl
cd mbsrun/th22
mbs
@startup
connect rfio lxg1297 -disk
open file lxg1297:/data.local2/BeamTimeTh22/229Thor -auto -rfio
sta ac
To stop MBS enter the following commands
sto ac
close file
disconnect rfio
@shutdown
exit
resl |
18
|
Thu Mar 17 17:37:49 2022 |
Rodolfo | Accelerator | High voltage dividers for E-Cooler |
Two dividers, from PTB-Braunschweig, have been deliver today. We will use them to monitor the electron-cooler voltage in situ.
- PT120 (up to -120 kV) with scaling factor: 12003.341, and
- PT200.1 (up to -200 kV) with a scaling factor: 19859,033.
Tomorrow (Friday 18.3.) we will install them in the Faraday cage at ESR.
PT120 will be use for the "Channeling experiment" (E137 Bräuning-Demian) and the PT200.1 for the "Thorium experiment" (E142 Brandau). |
Attachment 1: PTB_Spannungsteiler_Mar2022.jpg
|
|
150
|
Fri Apr 8 05:46:35 2022 |
V. Hannen | Detectors | High background rate in Cu PMT points to light leak in ESR or active pressure gauge |
The background rate of the Cu mirror PMT is only about 300 cps when the mirror is in the parking position but ca. 7000 cps when in the beam position, even if no beam is present in the ESR. This was noticed when we had an "empty injection" into the ring, causing the Cu mirror to drive into the beam position with no ions present.
This means either we have a light leak somewhere on the detector side of the ring, e.g. a not perfectly covered window, or we have a pressure gauge operating still to close by (during the LIBELLE experiment we turned off all pressure gauges on the detector side of the ESR not only in the straight section but also somewhat into the bends). This has to be checked the next time we can enter the ring. |
40
|
Thu Mar 31 11:49:54 2022 |
Konstantin | Detectors | HV-Supply of particle detectors |
We cross-checked the cabeling of the particle detectors north and south. Particle detector south is connected to channel HV5 at the yellow "ESR Messplatz III" patch-panel. Particle detector north is connected to channel K5 at the green "ESR Messplatz II" patch-panel. Red high voltage power-supply is used to control the voltage. |