HOME ESR EXPERIMENTS LABS etc
E121 E127 E132 E125 E143 laser_cooling_2021 E142 Ê128 E146 E0052 E0018 E0028 E0038
  Nuclear hyperfine mixing in 229Th89+ 2024, Page 1 of 4  Not logged in ELOG logo
Entry  Wed Jun 26 11:59:12 2024, Ruijiu, Shahab, Carsten, Analysis, Prepare plots for Thomas's presentation 6x
data:
(env_OnlineDataAnalysisSystem) litv-exp@lxbk0497:/lustre/astrum/experiment_data/2024-05_E018/OnlineDataAnalysisSystem/data/iq/IQ_2024-06-
12_21-47-54$
The root file is at:
(env_OnlineDataAnalysisSystem) litv-exp@lxbk0497:/lustre/astrum/experiment_data/2024-05_E018/OnlineDataAnalysisSystem/data/iq/IQ_2024-06-
12_21-47-54$ root filtered_spectrum_670_750.root

The figure below shows the interface of the program "combine_injection". You can combine any tdms file with this program. To run this 
program, you need to log in to the server /luster/astrum/, and activate the conda environment. Then type the command "combine_injection" at 
the terminal. You will see the interface. 
Entry  Sat Jun 15 03:46:34 2024, Night shift, Accelerator, GSI down 
All quadrupole and dipole magnets at SIS and ESR are out of order. Repairs can be expected earliest tomorrow evening. No shifts will take place before 6pm. Have a look at your mails for details.
Entry  Fri Jun 14 14:44:51 2024, Afternoon shift, Runs, Afternoon shift 
Pizza shift

the scan direction is from higher wavelength to lower wavelength, even though it is noted otherwise here in the software.
From hardware side, the laser can only scan in one direction: long wave length to short wave length, independent of what is written in the tables.


Time Part. Det. Int ESR-intensity cooler-HV LMD-DAQ1 Files LMD-DAQ2 Files scan range(nm) number of positions dwell time(s) n loops comments
14.06.2024 12:45 38900 2e5 104411 72 89 549.6 - 550.4 201 1s 3 starting with 50 accumulation
14.06.2024 13:13 41400 2e5 104411 73 90 549.6 - 550.4 201 1s 3 there was a :10 crash during the injection, laser scan started normally.
14.06.2024 13:41 39500 2e5 104411 74 91 549.6 - 550.4 201 1s 3
14.06.2024 14:38 67750 2e5 104412 75 92 549.6 - 550.4 201 1s 3 afternoon shift takes over. After short break from hkr to optimize beam, proceeding with 30 injections, particle number detector might not have been reset, check next run
14.06.2024 15:02 34500 2e5 104412 76 93 549.6 - 550.4 201 1s 3
14.06.2024 15:38 27500 1e5 104412 77 94 549.6 - 550.4 201 1s 3
14.06.2024 16:01 25300 1e5 104412 78 95 549.6 - 550.4 201 1s 3
14.06.2024 16:23 28700 1e5 104412 79 96 549.6 - 550.4 201 1s 3 At around 550.2 nm the wavemeter is overexposed
14.06.2024 16:48 xxx xx xx 80 97 xx xx xx xx empty file , no laser scan, work on laser, while trying to adjust the wavemeter, we tried to move the laser using medusa, at some point, this caused the cobra to go into error mode again, onlz a restart could solve it. As a consequence, we still do not know if the wavemeter coupling is optimal
14.06.2024 17:17 30000 1e5 104412 81 98 549.6 - 550.4 201 1s 3 wavemeter coupling looks good now
14.06.2024 17:41 56900 1e5 104412 82 99 549.6 - 550.4 201 1s 3 ratemeter was probably not reset
14.06.2024 18:04 8100 1e5 104412 83 100 549.6 - 550.4 201 1s 3 really bad injection (looked fine (?)), low ion count from SIS, they exchanged a cathode @UNILAC
14.06.2024 18:42 3200 3e4 104412 84 101&102(automatically opened new file without command after 1GB?) 549.6 - 550.4 201 1s 3 problems with accelerator: after deacceleration the beam is gone. Scraper position has moved(?). The cooling water from GSI is too warm, so we had to shut down the laser. NTCAP restarted. And NTCAP restarted again @20:39 for test data for Shahan.
Entry  Fri Jun 14 13:14:29 2024, Konstantin, Bernhard, Peter, Lukas, General, DAQ crashes at :10 
10 Minutes past a full hour (XX:10) the windows PCs (sometimes) loose connection.
This causes the labview server & the laser remote ctrl to crash.

reset:
- "sto ac" on first DAQ1
- restart labview server (medusa - run - make data available for mbs off/on)
- "sta ac" on first DAQ1

It can make sense to try to avoid laser scans in this time window if those crashes occur more regularly.
Entry  Fri Jun 14 11:44:23 2024, Carsten Brandau, Accelerator, Cooling Time in SC7 increased from 9s to 12s 
Cooling Time in SC7 increased from 9s to 12s
Entry  Fri Jun 14 06:38:41 2024, Konstantin Mohr, Bernhard Maass, Peter Micke, Lukas Kau, Dounia Boudefla, Runs, Morning runs 
Very successful shift, no crashes until 11:10
Previous night shift had problems with the pulse laser starting around 3am.
Something was loose at the FCU. Rodolfo was called in and was able to fix it.

the scan direction is from higher wavelength to lower wavelength, even though it is noted otherwise here and in the software.

Time Part. Det. Int ESR-intensity cooler-HV LMD-DAQ1 Files LMD-DAQ2 Files scan range(nm) number of positions dwell time(s) n loops comments
14.06.2024 06:35 36500 7e5 104410 59 76 550.1 - 550.9 201 1s 3
14.06.2024 07:00 24600 8e5 104409 60 77 550.1 - 550.9 201 1s 3
14.06.2024 07:23 22900 8e5 104410 61 78 550.1 - 550.9 201 1s 3
14.06.2024 07:44 27000 8e5 104410 62 79 550.1 - 550.9 201 1s 3
14.06.2024 08:06 31000 7e5 104410 63 80 550.1 - 550.9 201 1s 3
14.06.2024 08:29 29500 8e5 104410 64 81 550.1 - 550.9 201 1s 3
14.06.2024 08:52 26800 8e5 104410 65 82 550.1 - 550.9 201 1s 3
14.06.2024 09:13 33500 8e5 104410 66 83 550.1 - 550.9 201 1s 3
14.06.2024 09:35 15700 8e5 104410 67 84 550.1 - 550.9 201 1s 3 only 10 shots accumulation
14.06.2024 09:59 35000 8e5 104410 68 85 550.1 - 550.9 201 1s 3 back to 30 shots accumulation
14.06.2024 10:24 33600 8e5 104410 69 86 550.1 - 550.9 201 1s 3
14.06.2024 10:48 35500 9e5 104410 70 87 550.1 - 550.9 201 1s 3
14.06.2024 11:09 8e5 104410 71 88 550.1 - 550.9 201 1s 3 data crash, labview disconnected


2024-06-14 (note added): Intensities from ESR trafo are not reliable at low internisties, offset can change substantially. Use trafo only with ion numbers sginificantly higher than 1e6.
Entry  Thu Jun 13 22:08:07 2024, Dayshift, Accelerator, Problems with Accelerator? IMG_6064.jpgIMG_6065.jpgIMG_6066.jpg
It seems to be that there are some problems with the injections in the ESR.
The last 2 accumulation cycles showed that wheter only a small amount of ions are injected into the ESR or the injection is missing.

Photos of the last 2 accumulation cycles are attached.

We ask if there are some problems with the ESR or with the SIS18, because the particle number in the SIS18 is also decreasing... 
Entry  Thu Jun 13 18:48:26 2024, Ruijiu Chen, David, Shahab, Yuri, Analysis, The ion identification of 229Th is correct. simulation_result.outLifetime_of_beam7.pdf
Harmonic: 124.0 , Bp: 7.796046 [Tm]
ion            fre[Hz]                       yield [pps]    
------------------------------------------------------------
237U+92        243732740.7822311819          8.6164e+03     
237Np+92       243732858.1891748905          1.9672e+02     

224Ac+87       243759120.6575988531          1.7025e+03     

229Pa+89       243784072.1343108118          2.5529e+03     
229Th+89       243784111.0000000000          3.3883e+03   
  
234Pa+91       243807737.9699291289          2.4721e+03     
234Np+91       243807852.4158236086          1.7745e+01     

The strongest line is 229Th+89/229Pa+89. The yield and frequency of 229Pa+89 and 229Th+89 are very close to each other.  We needed to 
install Al target to suppress Pa as much as possible. Al gives a better ratio of h-like to he-like than Be. Two peaks at left 
side are 237U+92/237Np+92 and 224Ac+87. One peak at right side is 
234Pa+91/234Np+91. 

Note added 2024-06-14 (Carsten): a) We will not produce Np, this is an artifact of Lise, b) relative intensities are for injection only. Line intensities for  237U/224Ac/234Pa are substantially lower after cooling/HF/deceleration.
Entry  Thu Jun 13 18:38:24 2024, Rodolfo Sanchez, Julian Palmes, Sebastian Klammes, Laser, Laser Dye change - new MRC settings - scraper checks of laser beam MRC-settings-13-06-2024-after-dye-change-at-3pm.JPG
We changed the dye at ~3pm.

After some fine adjustements of the laser we had to change the MRC settings, because the laser position changed.
Therefore we checked the position of the laser with the T-Scrapers with the settings from post 49 "First Scraper Scan".

New settings of MRC and screen pic is attached.
The position of the laser on the screen is now the 'same' as yesterday (see attachement).
Entry  Thu Jun 13 18:23:46 2024, Julian, Laser, Restarting the laser controller 
If the laser controller is locked up again, the little display will show an error message after an attempted medusa scan.
To restart it, follow these steps:
1.) Unlock the beam stabilization.
2.) shut down medusa and the wavemeter software
3.) Turn off the 2 laser stages
4.) Close the shutter of the pumping laser
5.) Turn off and on the power button of the pulsed laser inside of the black box of the pump laser insertion.

To start again go back through the list.
Entry  Thu Jun 13 18:03:36 2024, Afternoon shift, Runs, Continuation: First scans 2024_06_13_229Th_Lifetime_at_190MeV_afterscraping.png2024-06-13_23-13-55-242.png
Time Part. Det. Int ESR-intensity cooler-HV LMD-DAQ1 Files LMD-DAQ2 Files scan range(nm) number of positions dwell time(s) n loops comments
00:01 3e5 104438 13 27-29 550.1 - 550.9 201 2s 4 40 injections, there is still a fast decaying component, may be due to the higher electron current of 200 mA. Going back to 100 mA in next run and also put a "loose" scraper on the inside.


ntcap 2024-06-12_21-47-54

Time Part. Det. Int ESR-intensity cooler-HV LMD-DAQ1 Files LMD-DAQ2 Files scan range(nm) number of positions dwell time(s) n loops comments
00:50 ? 3e5 104438 14 28- 550.1 - 550.9 201 1s 6 30 injections, e-cooler current at 100mA, scraper GE01GD2ID (north arc, inner scraper) now at position +30mm, medusa crashed when started, laser position was lost and retrieved by resetting the beam position stabilization
01:43 25700 3e5 104438 15 31-32 550.1 - 550.9 201 1s 6 e-cooler current 100mA, NA position -30 activated, NI +28, SA -28, DS3HG +10
02:32 21750 4e5 104417 16 33 550.1 - 550.9 201 1s 3 reduced iterations due to short life time
02:54 29200 4e5 104417 17 34 550.1 - 550.9 201 1s 3
03:16 (?) 4e5 104417 18 35 550.1 - 550.9 201 1s 3
03:40 33700 5e5 104417 19 36 550.1 - 550.9 201 1s 3
04:03 31600 5e5 104417 20 37 550.1 - 550.9 201 1s 3
04:25 29200 4e5 104417 21 38 550.1 - 550.9 201 1s 3
04:46 27500 4e5 104417 22 39 550.1 - 550.9 201 1s 3
05:08 30400 4e5 104417 23 40 550.1 - 550.9 201 1s 3
05:31 31300 4e5 104417 24 41 550.1 - 550.9 201 1s 3
05:56 30000 3e5 104417 25 42 550.1 - 550.9 201 1s 3
06:18 24500 4e5 104417 26 43 550.1 - 550.9 201 1s 3 Morning shift took over: Constantine, Peter, Lukas, Jonas, Dounia
06:43 27 44 550.1 - 550.9 201 1s 3 Medusa crashed when starting the laser scan
06:57 4e5 104417 28 45-46 550.1 - 550.9 201 1s 3 DAQ1 started a bit later since we needed to restart and connect the file server again; after starting laser scan we noticed that the beam is gone on glass disk, reason was likely user error as medusa was set to send the laser to 500.9nm instead of 550.9nm
07:27 11800 4e5 104417 29 47 550.1 - 550.9 201 1s 3
07:51 23500 4e5 104417 30 48 550.1 - 550.9 201 1s 3
08:14 15000 5e5 104417 31 49 550.1 - 550.9 201 1s 3
08:37 35300 5e5 104417 32 50 550.1 - 550.9 201 1s 3
08:58 32800 5e5 104417 33 51 550.1 - 550.9 201 1s 3
13.06.2024 17:32 23 500 5e5 104412 35 52 550.1 - 550.9 201 1s 3First scan of afternoon shift. 30 Injections. Electron current was set to 30 mA. (Note added 2024.06.14 17:55 - Carsten: To what I remember electron current is 80mA) Dye was changed before this scan. Wavemeter overexposed on the second scan for 2-3 steps, not sure if during the stepping or actual measurement. In the middle of the third scan, medusa crashed.
13.06.2024 xx 5e5 104417 36 53 550.1 - 550.9 201 1s 3 25 Injections 75Hz particle detector south, medusa crashed immediately, laser controller was locked up. Restarting the laser controller solved the issue.
13.06.2024 18:30 28 200 5e5 104412 37 54 550.1 - 550.9 201 1s 3 25 Injections , DAQ1 no data collected (no start acquisition pressed)
13.06.2024 18:50 26 000 5e5 104412 38 55 550.1 - 550.9 201 1s 3 23 of 25 Injections, two were empty injections from SIS
13.06.2024 19:13 31 600 5e5 104412 39 56 550.1 - 550.9 201 1s 3 29 of 30 Injections, one was empty injections from SIS
13.06.2024 19:45 34 700 5e5 104411 40 57 550.1 - 550.9 201 1s 3 30 of 30 Injections
13.06.2024 20:07 33 300 6e5 104411 41 58 550.1 - 550.9 201 1s 3 30 of 30 Injections. Note: before and after run, the laser was exactly in the middle of the screen, but went to its proper position (slightly left of the middle) during the scan.
13.06.2024 20:36 29 900 7e5 104411 42 59 550.1 - 550.9 201 1s 3 30 of 30 Injections. Note: Before the run ad during the first scan, the laser was above the middle. In the third scan, it was back in its proper position.
13.06.2024 20:57 28 900 7e5 104411 43 60 550.1 - 550.9 201 1s 3
13.06.2024 21:18 26 000 7e5 104411 44 61 550.1 - 550.9 201 1s 3 27 of 30 Injections
13.06.2024 21:40 18 000 6e5 104411 45 62 550.1 - 550.9 201 1s 3 out of the first injections 4 were with low energy and 4 did not arrive at all, for the rest, pretty much every second injection is missing. Checking with HKR.
13.06.2024 22:02 24 900 7e5 104411 46 63 550.1 - 550.9 201 1s 3 Same thing with injection.
13.06.2024 22:23 31 700 7e5 104411 47 64 550.1 - 550.9 201 1s 3
13.06.2024 22:46 30 900 7e5 104411 48 65 550.1 - 550.9 201 1s 3
13.06.2024 23:09 33 100 7e5 104411 49 66 550.1 - 550.9 201 1s 3 Laser shifted to the left
13.06.2024 23:33 25 200 7e5 104411 50 67 550.1 - 550.9 201 1s 3
13.06.2024 23:55 28 600 7e5 104411 51 68 550.1 - 550.9 201 1s 3 We moved the laser back to the original position using the MRC
14.06.2024 00:52 33 100 8e5 104410 52 69 549.85 - 550.9 239 1s 3 Widen scan range to account for the difference between wavelength vac. vs. wavelength air; Laser shifted to the left
14.06.2024 01:20 29 800 8e5 104410 53 70 549.85 - 550.9 239 1s 3
14.06.2024 01:44 -- 7e5 104410 54 71 549.85 - 550.9 239 1s 3 Medusa crashed and was restarted; measurement interrupted; connection of MBS to Labview server crashed and MBS and go4 were restarted (DAQ1)
14.06.2024 02:03 34 700 8e5 104410 55 72 549.85 - 550.9 239 1s 3
14.06.2024 02:26 31 400 7e5 104411 56 73 549.85 - 550.9 239 1s 3
14.06.2024 02:49 -- 7e5 104411 57 74 549.85 - 550.9 239 1s 3 Medusa crashed and was restarted; measurement interrupted
14.06.2024 02:51 -- 7e5 104411 58 75 549.85 - 550.9 239 1s 3 Medusa crashed and was restarted;


The Medusa crash also crashed the Cobra Laser. We tried to restart it but afterwards the power of the Laser was more than one order of magnitude lower than before. It is not clear what caused the problem, Rodolfo is on his way to GSI now to fix the issue.
Entry  Thu Jun 13 14:56:09 2024, Stefan Schippers, Accelerator, Estimated beam lifetime: About 150 s 
Estimate of storage lifetime using my code 'hydrocal':

 ion mass in u ...................................: 229
 ion nuclear charge ..............................: 90
 ion charge state ................................: 89
 beam energy in MeV ..............................: 45501.1
 beam energy in MeV/u ............................: 198.695
 beam beta .......................................: 0.566309
 beam rigidity in T m.............................: 5.4944
 ring circumference in m .........................: 108.36
 ring acceptance in mrad .........................: 2
 ring temperature in °C ..........................: 25
 ring vacuum pressure in mbar ....................: 3e-11
 residual gas density in m^-3 ....................: 7.28767e+11
 residual gas composition 
  Z   %
  1  93.43
  6   2.23
  7   0.75
  8   3.29
 18    0.3
 cooler length in m ..............................: 2.5
 electron current in A ...........................: 0.2
 magnetic expansion factor .......................: 1
 electron-beam diameter in mm ....................: 50.8
 electron density in cm^-3 .......................: 3.62844e+06
 cooler cathode temperature in meV ...............: 110
 cooling energy in eV ............................: 109000
 space_charge (0th iteration) in eV ..............: 44.3477
 space_charge (1st iteration) in eV ..............: 44.341
 transverse temperature in meV ...................: 110
 longitudinal temperature in meV .................: 0.2
 RR nmin .........................................: 1
 RR lmin .........................................: 0
 RR nele [no. electrons in subshell (nmin,lmin)] .: 1
 RR nmax .........................................: 128
 RR enhancement factor ...........................: 2.5
 RR alpha in cm^3 s^-1 ...........................: 8.04602e-08

 beam lifetime due to multiple scattering in s ...: 1.86e+06
 beam lifetime due to single scattering in s .....: 7.51886e+07
 beam lifetime due to charge capture in s ........: 3.5516e+06
 beam lifetime due to stripping in s .............: 1e+99
 beam lifetime due to recombination in cooler in s: 148.466
 beam lifetime with electron cooling in s ........: 148.46
 beam lifetime without electron cooling in s .....: 1.20121e+06

 detector count rates for 1E6 stored ions and a residual gas pressure of 3e-11 mbar: 

       recombination detector from ecool (Hz) ....: 4575.41
     recombination detector from res.gas (Hz) ....: 0.0545666
    total rate on recombination detector (Hz) ....: 4575.46

        ionization detector from res.gas (Hz) ....: 1.93798e-94
Entry  Thu Jun 13 14:41:22 2024, Ruijiu Chen, David, Analysis, Lifetime of beam during June 13 9:00~11:00 Lifetime_of_beam5.pdf
 
Entry  Thu Jun 13 14:35:27 2024, Ruijiu Chen, David, Analysis, Lifetime of beam during June 13 7:00~9:00 Lifetime_of_beam4.pdf
 
Entry  Thu Jun 13 14:20:36 2024, Ruijiu Chen, David, Analysis, Lifetime of beam during June 13 4:30:7:00 Lifetime_of_beam3.pdf
 
Entry  Thu Jun 13 13:29:47 2024, Ruijiu Chen, David, Analysis, Lifetime of beam during June 12 22:00- June 13 0:00 Lifetime_of_beam2.pdf
 
Entry  Thu Jun 13 12:37:14 2024, Ruijiu Chen, David, Analysis, Lifetime of beam in center of mass is 193 s. Lifetime_of_beam.pdf
 
Entry  Thu Jun 13 12:05:31 2024, Konstantin, Peter, Jonas, Accelerator, RF-amplitude Bunching80mA_BucketFill_10.pngBunching80mA_BucketFill_08.png
To realize the shortest bunches possible, we check the bunch length as a function of two different bunching amplitudes. With the bucket fill set to 1.0 we observe the spectra compiled in attachment 1. The second attachment is recorded with a bucket fill 0f 0.2.

For an RF amplitude of 0.2 we do not observe bunches any more but a coasting beam. In the shottky spectrum we can resolve a shift of the signal and thereby adjust the electron cooler voltage to the bunching frequency to within 1 V.

U_e-cooler = -104410 V
I_e-cooler = 80 mA
Entry  Thu Jun 13 10:42:02 2024, Danyal, General, Question 
What is the ion beam lifetime, according to the DCCT and Schottky? 
Can somebody measure it, please? 
Yesterday we could not see a fast drop in the "main" beam. 

Because the lifetime that is mentioned here is the one based on the particle detector and on the PMT countrate. 
If what is seen now is "only" some fast decaying component inside the beam, we could simply wait for its decay and then continue with the real measurement. 
Entry  Thu Jun 13 10:32:29 2024, Konstantin, Accelerator, (Proper) Cooler settings 
We change the acceleration voltage of the electron cooler and observe the platform high voltage and the count rate at the particle detector south.
Cooler current at 100mA.


set voltage measured voltage Schottky width
-40
80
-40
100
120
-40
-60
-80
-100
-120
-38
-40
-42
-44
-46
-48
-40
-38
-36
-34



with scraper driven in (first signal drop in attachment 2):

set voltage measured voltage Schottky width
-40
-38
-36
-34
-32
-30
-20 25kHz
-10 48kHz
-0 63kHz
-40
-42
-44
-46
-56 7kHz
-66 19kHz
-76 40kHz


5kHz Shottky width at proper cooling conditions.

Modified bunching HF in beam process 7 and 10 in Paramodi folder "Ring HF" to get coasting beam conditions.

Afterwards manipilated the electron current from 100mA to 200mA to 50mA in BP8.
ELOG V3.1.5-fc6679b