Fri Jun 7 13:52:32 2019, Jan, Runs, prerun002 - MixedAlpha,
|
save point: lxg1275:/datalocal1/e127/predata/prerun002
~20min run
DAQ setup:
32 ADC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 TDC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 scaler channles
(not used)
Detector setup:
bias -90V
MixedAlpha source in upper left corner |
Fri Jun 7 14:28:09 2019, Jan, Runs, prerun003 - MixedAlpha,
|
save point: lxg1275:/datalocal1/e127/predata/prerun003
~20min run
DAQ setup:
32 ADC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 TDC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 scaler channles
(not used)
Detector setup:
bias -90V
MixedAlpha source in lower right corner |
Fri Jun 7 14:39:36 2019, Jan, Detectors, Pt100 installation & readout,
|
The new detector holder incorporates a Pt100 temperature sensor, which is UHV compatible. The Pt-resistor is read out via 4 wires. These wires are integrated into the D-SUB connector of the detector. The new wires use the pins as shown in the attached picture
"det_connector.png".
Additionally, a new cable for air-sided connection to the feedthrough is made. This one has an additional outgoing branch for the 4-wire Pt-100 readout, which can be connected to the readout device.
The readout device is an Omega DP32Pt, which provides pre-calibrated conversion to temperature values for many sensor types.
https://www.omega.de/temperature/pdf/DPPT_SERIES.pdf
https://assets.omega.com/manuals/M5460_DE.pdf
https://data2.manualslib.com/pdf6/133/13210/1320926-omega/cn32pt.pdf?0f771b894ebb783ac172a013ea140d1d |
Fri Jun 7 15:57:41 2019, Jan, DAQ, DAQ with & without MDPP-16,
|
The DAQ located in
../esrdaq_2018/r4l-58/
currently includes the readout of
MADC
Caen 775 TDC
Caen 830 Scaler
MDPP-16
../esrdaq_2018/r4l-58_rewind/
is without the MDPP-16:
MADC
Caen 775 TDC
Caen 830 Scaler |
Tue Jun 11 10:13:56 2019, Jan, Runs, prerun003 - MixedAlpha,
|
save point: lxg1275:/datalocal1/e127/predata/prerun004
~10min run
DAQ setup:
32 ADC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 TDC channels
ch. 1-16 (section 0) >> y-strips
ch. 17-32 (section1) >> x-strips
32 scaler channles
(not used)
Detector setup:
bias -90V
MixedAlpha source in center
new air-side cable used (with temp. sensor) |
Fri Jun 28 14:06:28 2019, Jan, General, CAD of (p,g) setup,
|
|
Thu Aug 29 10:02:22 2019, Jan, Detectors, bakeout at ESR setup,
|
The bakeout for our detector setup has started on the evening of 27.08.2019
We have a temperature sensor in the vacuum next to the detector.
The goal is to maximize bakeout temperature, while not going above 125°C at the detector/sensor.
Here is a daily protocol of temperatures and vacuum pressure
T_12 is the set value of the 1st and 2nd controller device
T_34 is the set value of the 3rd and 4th controller device
T_56 is the set value of the 5th and 6th controller device
T_sens is the temperature measured by the sensor close to the detector
day date P_setup T_sens T_12 T_34 T_56 comment
1 tue 28.08. 1e-6 mbar ~100° ~120° ~120° ~120° carefull start
2 wed 29.08. 3e-7 mbar ~121° ~180° ~150° ~150° T_sens reached ~126° during NEG-pump conditioning
3 thu 30.08. 6e-7 mbar ~124° ~185 ~150° ~175° readjusted T_56, outgassing a bit increased
7 mon 02.09. 5e-9 mbar ~80° during cooldown
9 wed 04.09. 2e-10mbar ~30° after cooldown, NexTorr Pump active |
Wed Oct 23 11:40:29 2019, Jan, Runs, prerun005 - MixedAlpha,
|
save point: lxg1275:/datalocal1/e127/predata/prerun005
start: 23.10.19 - 11:40
stopp: 23.10.19 - ~13:30
DAQ setup:
32 ADC channels
ch. 1-16 (section 0) >> x-strips
ch. 17-32 (section1) >> y-strips
32 TDC channels
ch. 1-16 (section 0) >> x-strips
ch. 17-32 (section1) >> y-strips
32 scaler channels
(not used)
Detector setup:
bias -30V
MixedAlpha source in center |
Wed Oct 23 15:35:29 2019, Jan, DAQ, DAQ with & without MDPP-16,
|
the DAQ located in
../esrdaq_2018/r4l-58_dev/
currently includes
2x MADC
2x Caen V775 TDC
2x Caen V830 Scaler
> The DAQ located in
>
> ../esrdaq_2018/r4l-58/
> currently includes the readout of
> MADC
> Caen 775 TDC
> Caen 830 Scaler
> MDPP-16
>
> ../esrdaq_2018/r4l-58_rewind/
> is without the MDPP-16:
> MADC
> Caen 775 TDC
> Caen 830 Scaler |
Fri Oct 25 16:34:51 2019, Jan, Runs, prerun007 - MixedAlpha,
|
save point: lxg1275:/datalocal1/e127/predata/prerun007
start: Fr 25.10.19 - 16:35
stopp:
DAQ setup:
64 ADC channels
ch. 01-64 (ADC0) >> empty
ch. 33-48 (ADC1 - section0) >> x-strips
ch. 49-64 (ADC1 - section1) >> y-strips
32 TDC channels
ch. 01-64 (TDC0) >> empty
ch. 33-48 (TDC1 - section0) >> x-strips
ch. 49-64 (TDC1 - section1) >> y-strips
64 scaler channels
(not used)
Detector setup:
bias -30V
MixedAlpha source in center |
Tue Feb 11 13:20:01 2020, Jan, Detectors, BaF2 - HV settings,
|
with these HV values the 6 channels are roughly gain matched, such that the 7.83 MeV Po-decay is around channel 5000. |
Mon Feb 17 08:14:44 2020, Jan, Simulations, 118Te K-REC X-ray energies,
|
X-ray energies of K-REC for 118Te according to
http://www-ap.gsi.de/Thomas/ap_html_research/energy/index.php
parameters | 35 deg | 90 deg | 145 deg
|
8 MeV/u | 47.29 keV | 42.25 keV | 38.17 keV
|
5 MeV/u | 44.51 keV | 40.74 keV | 37.57 keV
|
Full results are attached |
Fri Feb 21 11:29:59 2020, Jan, Detectors, det. distances at target chamber,
|
This is the lookup table for the distance of each x-ray detector to the target.
See attched foto for explanation.
Detector | A (dA) [mm] | B (dB) [mm] | C (dC) [mm] | calculate | result [mm]
|
35° | 136.0 (1.0) | 20.0 (0.2) | 450.0 (0.5) | C + B - A | 334.0 (?)
|
90° | 76.0 (0.5) | 20.0 (0.2) | 447.0/2 = 223.5 (1.0) | C + B - A | 167.5 (?)
|
145° | 165.0 (1.0) | 20.0 (0.2) | 450.0 (0.5) | C + B - A | 305.0 (?)
|
Errors are estimated after measurement, final errorbars have to be double checked! |
Tue Mar 10 08:52:34 2020, Jan, Detectors, DSSSD positioning,
|
To find a good Si position, we need to follow a procedure similar to this:
1. Si in max-in position
2. find distance of beam by scraping with detector from inside
--> zero position
3. from this zero, we need to set a distance of about 1.5 cm to the inside (as shown in the sketch below)
It is likely that this position is not compatible with the complete ESR cycle (e.g. we scrape beam with det. during deceleration).
The solution is to move the beam closer to the detector after deceleration. There are two feasible methods to do this:
A. make a local bump in the dipole
--> check new zero and det. position again, as sketched above
--> in 2016 this method didn't allow to go close enough to the detector, eventually we used:
B. global orbit change (by magnet ramp) + target bump (to keep overlap)
--> this takes a bit more time to set up and also the cycle will be longer at low energies (critical due to life-time)
--> method A is preferred, but might not be strong enough
This needs to be checked and repeated for each new beam setting. |
Tue Mar 10 09:41:26 2020, Jan, Detectors, x-ray background from BaF,
|
The BaF2 detectors planned to be installed at the target induce an additional background in the x-ray detectors sitting below inside the target chamber.
We made test measurements with an x-ray detector for estimating the background in the region of interest for our K-REC measurements (35 to 50 keV).
For the interval [35-50 keV]:
Normal background level: 0.065 (s*keV)^-1
BaF2 in 5cm distance: 0.078 (s*keV)^-1
This is an increase by about 22%
Assuming an increase by 100% induced by 6 BaF2 in the vincinity of the Ge-detectors this seems acceptable.
However additional BaF-induced peaks are also visible at ~30 keV and ~60 keV. While these are not in the region of interest for the K-REC, we need to be aware of them!
spectra are available on the Frankfurt exp-astro Server at /home/glorius/e127/ |
Wed Mar 11 09:08:21 2020, Jan, DAQ, DAQ & controls - OVERVIEW,
|
For all DAQ & slow control buissines the user
litv-exp
is used with the password ViValasVegas1964
Here is a list of computers and devices we use for the current DAQ:
- r4l-58 - VME cpu (RIO)
our DAQ runs on this computer
access from lxg1275 via ssh litv-exp@r4l-58
the current DAQ directory is /esr/usr/litv-exp/2020_e127/r4l-58
from lxg-machines the DAQ dir can also be accessed via the mount point at /lynx/Lynx/esr/usr/litv-exp/2020_e127/r4l-58
- lxg1275 - main DAQ handler
used for communication with the DAQ and primary data writing/streaming
access from any lxg via ssh litv-exp@lxg1275
primary data folder: /data.local3/e127/lmd/
local backup folder: /data.local2/e127/lmd_backup/
- lxg1299 - online monitoring
used for the R3Broot online monitor server
access from any lxg via ssh litv-exp@lxg1299
online data: /data.local3/e127/online/
- atpnu004 - slow control
used for remote access to SpecAmps (MesyTec Shapers), Si-HV (caen) and picoscopes
access from any lxg via E127_nuc or ssh litv-exp@atpnuc004
screen sessions: mesy_ioc (shapers), caen_ioc (Si HV)
access screens by screen -x mesy_ioc or screen -x caen_ioc (exit with [Ctrl-a d])
access vnc session for picoscopes on any lxg: E127_vnc or vncviewer atpnuc004:1
- apraspi001 - slow control 2
used for remote access to the BaF HV crate
access from any lxg via ssh litv-exp@apraspi001
local access to HV control by telnet: telnet 169.254.93.160 1527
- lxg0188 - 1st backup node
used for direct backup of the written data (invoked automatically by stopping a run)
backup dir: /data.local2/E127_lmd/
- kronos.hpc.gsi.de - 2nd backup node
used for secondary backup of lmd-data on lxg0188 (chronjob every 4 hours)
backup dir: /lustre/ap/litv-exp/2020-03-17_E127_jglorius
List of commands and aliases
- E127_daq or /data.local1/e127/scripts/E127_start_gui.sh
this is the GUI to control the DAQ
available on lxg1275 only with litv-exp user
only one instance of this GUI can run at the same time!
- E127_unpack or /u/litv-exp/unpacker/unpackexps/e127/e127
this is the unpacker for the current DAQ
available on any lxg with litv-exp user
to unpack lmd-files to root-file: E127_unpack infile01.lmd infile02.lmd --ntuple=RAW,outfile.root
- E127_epics or epicsfind; medm -x /u/litv-exp/e127/medm/e127.adl
this is the GUI for slow control of Si HV and amplifiers (MesyTec Shapers)
available on any lxg with litv-exp user
- E127_rates or /u/litv-exp/e127/UDP/build_cc_x86_64-linux-gnu_4.9.2_debug/udp_reader --trig --rate
this is the UDP reader for detector and trigger rates
available on lxg1275 only with litv-exp user
|
Sun Mar 15 09:42:40 2020, Jan, Calibration, run030 - Xray90 calib Am241,
|
measurement with old tennelec specAmps, do not use for efficiency!
Detector: 90
Source: Am-241
Distance: 167.5mm
Start time: 13:06:55 15.03.2020
Stop time: 13:24:57 15.03.2020
file name: run030_xxxx.lmd
avrg. rate: 650Hz
dead-time: 7% |
Sun Mar 15 13:08:38 2020, Jan, Calibration, run031 - Xray90 calib Ba133 hi-rate,
|
measurement with old tennelec specAmps, do not use for efficiency!
Detector: 90
Source: Ba-133 strong source
Distance: 167.5mm
Start time: 13:28:42 15.03.2020
Stop time:13:38:16 15.03.2020
file name: run031_xxxx.lmd
avrg. rate: 2.7kHz
dead-time: 25% |
Sun Mar 15 13:40:11 2020, Jan, Calibration, run032 - Xray90 calib Ba133,
|
measurement with old tennelec specAmps, do not use for efficiency!
Detector: 90
Source: Ba-133 weak source
Distance: 167.5mm
Start time: 13:39:30 15.03.2020
Stop time: 13:50:55 15.03.2020
file name: run032_xxxx.lmd
avrg. rate: 150Hz
dead-time: 1.5% |
Sun Mar 15 13:52:05 2020, Jan, Calibration, run033 - Xray145 calib Am241,
|
measurement with old tennelec specAmps, do not use for efficiency!
Detector: 145
Source: Am-241
Distance: 305mm
Start time: 14:15;56 15.03.2020
Stop time: 14:40:21 15.03.2020
file name: run033_xxxx.lmd
avrg. rate: 300Hz
dead-time: 4% |